The generator matrix

 1  0  0  0  1  1  1  6  1  1  1  1  0 X+3  1  1  1  3  1  1  1 X+6  X  1  1  1  1 X+6  1  1 2X  1  1  1  6  1  1  1  X 2X  1  1 2X+6 2X+6  1 X+3  1  1  1 X+6  1  1  1 X+6  1 X+3  1 X+6  1  1  1  1  1  1 2X+6  X
 0  1  0  0  6  1  4  1  X X+3  2  8  1  1 2X+2  7  2  1 X+5 X+1  0 2X+3  1 X+7 X+7 2X+2  X  1  3 2X  1 2X+6 X+2 2X+1 2X+6 X+2  4 2X+7  1 2X+3 X+5 X+4  6  1 2X+4  1  7 2X+2  8 2X+6  6 2X+6 2X+4  1  0  1 2X+4  1  3 2X+8 2X  2 2X+6 2X+5  1 2X+6
 0  0  1  0 2X+7 2X+1 X+5 2X+4 X+1 X+8 2X+3 X+4 2X 2X+8  2  8 X+6  1 X+1 X+6  X  1  8 2X+4 2X+6 X+8 2X+2 2X+6 X+7 2X+2 2X+1 X+3  1 2X+8  1 X+2  4 2X+6 X+8 2X 2X X+7  1 X+8  6  0 X+6 2X+1 X+1  1 X+2 2X+7 2X 2X 2X+2 X+2  8  0  7 2X+8  X  8  6 2X+7  4  1
 0  0  0  1 2X+5  3 2X+2 2X+2  1 X+3 2X+1 X+6 2X+4 X+8  7 X+3 2X X+6 X+5 2X+4  8  7 2X+1 X+4  5 X+2 2X+4 2X+5 2X+6  8  7  7  1 X+1 X+5 2X  2  X  X  1 2X+5 X+7 2X+4 2X+3 2X+4 2X 2X+2 X+7 2X+8 2X+3 2X+3 2X+7  3 2X+1  5 X+4 2X+6 X+5 2X+2  4 X+6  7 X+2  8 2X+3 X+4

generates a code of length 66 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 121.

Homogenous weight enumerator: w(x)=1x^0+1410x^121+2418x^122+5028x^123+8976x^124+12024x^125+15056x^126+24036x^127+29976x^128+33216x^129+44868x^130+51174x^131+51900x^132+56850x^133+54012x^134+43146x^135+37932x^136+25302x^137+14788x^138+10800x^139+5004x^140+1758x^141+1164x^142+282x^143+66x^144+78x^145+72x^146+32x^147+18x^148+30x^149+6x^150+6x^151+12x^152

The gray image is a code over GF(3) with n=594, k=12 and d=363.
This code was found by Heurico 1.16 in 555 seconds.